Sama5d4 Xplained

Last modified by Microchip on 2025/08/04 12:09

SoC Features

The SAMA5D4 MPU is ideal for any high-performance, secure, and cost-sensitive industrial application. High-speed computing needs are supported by ARM Neon and 128kB L2 cache which increases the overall system performance. The SAMA5D4 is an ideal fit for low-cost user interface applications that require video playback. The high-grade security features allows you to protect any system against counterfeiting and software theft, and allows you to securely store and transfer data.

sama5d4.png

Kit Information

Kit Overview

SAMA5D4 Xplained

Access the console

The usual serial communication parameters are 115200 8-N-1 :

Baud rate115200
Data8 bits
ParityNone
Stop1 bit
Flow controlNone

Access the console on DBGU serial port

The DBGU serial console can be accessed from two connectors. One is from the DBGU port with the help of a TTL-to-USB serial cable (marked as DEBUG J1), another is from micro-A USB connector that gives access to the on-board serial-to-USB converter (marked as J20 EDBG-USB).

Using DBGU on TTL-to-USB connector (DEBUG J1)

  • For Microsoft Windows users: Install the driver of your USB TTL serial cable. FTDI-based ones are the most popular, have a look to this page to get the driver: https://www.ftdichip.com/Drivers/VCP.htm
  • Be sure to connect a 3.3V compatible cable and identify its GND pin. Place it properly according to the silkscreen and connect the cable to the board (J1)
    • For Microsoft Windows users: Identify the USB connection that is established, USB Serial Port should appear in Device Manager. The COMxx number will be used to configure the terminal emulator.
      ftdi serial line
    • For Linux users: Identify the serial USB connection by monitoring the last lines of dmesg command. The /dev/ttyUSBx number will be used to configure the terminal emulator.
      [605576.562740] usb 1-1.1.2: new full-speed USB device number 17 using ehci-pci
      [605576.660920] usb 1-1.1.2: New USB device found, idVendor=0403, idProduct=6001
      [605576.660933] usb 1-1.1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
      [605576.660939] usb 1-1.1.2: Product: TTL232R-3V3
      [605576.660944] usb 1-1.1.2: Manufacturer: FTDI
      [605576.660958] usb 1-1.1.2: SerialNumber: FTGNVZ04
      [605576.663092] ftdi_sio 1-1.1.2:1.0: FTDI USB Serial Device converter detected
      [605576.663120] usb 1-1.1.2: Detected FT232RL
      [605576.663122] usb 1-1.1.2: Number of endpoints 2
      [605576.663124] usb 1-1.1.2: Endpoint 1 MaxPacketSize 64
      [605576.663126] usb 1-1.1.2: Endpoint 2 MaxPacketSize 64
      [605576.663128] usb 1-1.1.2: Setting MaxPacketSize 64
      [605576.663483] usb 1-1.1.2: FTDI USB Serial Device converter now attached to ttyUSB0
      A /dev/ttyUSB0 node has been created.
  • Now open your favorite terminal emulator with appropriate settings

Using the micro-A USB connector (J20 EDBG-USB)

You can also access the serial console through the on-board serial-to-USB converter. In fact, the Atmel EDBG (Embedded Debugger) chip on the Evaluation Kit acts as a serial-to-USB converter and is loaded with a firmware that is able to talk USB-CDC protocol.

  • For Microsoft Windows users: Install USB drivers for Atmel and Segger tools. No need to install a driver on any regular Linux distribution.
  • Open JP1 to enable EDBG
  • Connect the USB cable to the board (J20 EDBG-USB)
    • For Microsoft Windows users: identify the USB connection that is established
      EDBG Virtual COM Port should appear in Device Manager. The COMxx number will be used to configure the terminal emulator.
      EDBG CDC UART Port
    • For Linux users: identify the USB connection by monitoring the last lines of dmesg command. The /dev/ttyACMx number will be used to configure the terminal emulator.
      [172677.700868] usb 2-1.4.4: new full-speed USB device number 31 using ehci-pci
      [172677.792677] usb 2-1.4.4: not running at top speed; connect to a high speed hub
      [172677.793418] usb 2-1.4.4: New USB device found, idVendor=03eb, idProduct=6124
      [172677.793424] usb 2-1.4.4: New USB device strings: Mfr=0, Product=0, SerialNumber=0
      [172677.793897] cdc_acm 2-1.4.4:1.0: This device cannot do calls on its own. It is not a modem.
      [172677.793924] cdc_acm 2-1.4.4:1.0: ttyACM0: USB ACM device
      idVendor=03eb, idProduct=6124: from this message you can see it's Microchip board USB connection.
  • Now open your favorite terminal emulator with appropriate settings

Demo

Demo archives

Media typeBoardScreenBinaryDescription
Yocto Project / Poky based demo
NAND FlashSAMA5D4 Xplained-linux4sam-poky-sama5d4_xplained-headless-2021.04.zip (~ 111 MB)
md5: c50897ee185e68812044c9d6895a6c3b
Linux4SAM Yocto Project / Poky based demo
compiled from tag linux4sam-2021.04
Follow procedure: #Flash_the_demo
PDA5" (TM5000 or AC320005-5)linux4sam-poky-sama5d4_xplained-graphics-2021.04.zip (~ 189 MB)
md5: cfc443b5b089b65d23ad6b083ab9d937
SD Card imageSAMA5D4 Xplained-linux4sam-poky-sama5d4_xplained-headless-2021.04.img.bz2 (~ 89 MB)
md5: b1115ae6d6736808a4d819fcc3df2192
Linux4SAM Yocto Project / Poky based demo
compiled from tag linux4sam-2021.04
Follow procedure: #Create_a_SD_card_with_the_demo
PDA5" (TM5000 or AC320005-5)linux4sam-poky-sama5d4_xplained-graphics-2021.04.img.bz2 (~ 161 MB)
md5: 3b03d599f25ae321fafe5e85b34ab251
BuildRoot based demo
SD Card imageSAMA5D4 Xplained-linux4sam-buildroot-sama5d4_xplained-headless-2021.04.img.bz2 (~ 46 MB)
md5: 8b6a856b87e9d3e6e9554ef08ab6bf28
Linux4SAM BuildRoot based demo
compiled from tag linux4sam-2021.04
Follow procedure: #Create_a_SD_card_with_the_demo
PDA5" (TM5000 or AC320005-5)linux4sam-buildroot-sama5d4_xplained-graphics-2021.04.img.bz2 (~ 148 MB)
md5: dc424ccf85f69dd0eaa4c687b70a531b
OpenWrt based demo
SD Card imageSAMA5D4 Xplained-linux4sam-openwrt-sama5d4_xplained-headless-2021.04.img.gz (~ 13 MB)
md5: cba5a46aebfb1be67b8a574b6f1c2b0e
Linux4SAM OpenWrt based demo
compiled from tag linux4sam-2021.04
Follow procedure: #Create_a_SD_card_with_the_demo

Create a SD card with the demo

You need a 1 GB SD card (or more) and to download the image of the demo. The image is compressed to reduce the amount of data to download. This image contains:

  • a FAT32 partition with the AT91Bootstrap, U-Boot and the Linux Kernel (zImage and dtb).
  • an EXT4 partition for the rootfs.

Multi-platform procedure

To write the compressed image on the SD card, you will have to download and install balenaEtcher. This tool, which is an Open Source software, is useful since it allows to get a compressed image as input. More information and extra help available on the balenaEtcher website.

Insert your SD card and launch Etcher:
etcher_sel.jpg

Select the demo image. They are marked as "SD Card image" in the demo table above.
Note that you can select a compressed image (like the demos available here). The tool is able to decompress files on the fly

Select the device corresponding to your SD card (Etcher proposes you the devices that are removable to avoid erasing your system disk)

Click on the Flash! button

On Linux, Etcher finally asks you to enter your root password because it needs access to the hardware (your SD card reader or USB to SD card converter)

then the flashing process begins followed by a verification phase (optional)

etcher_finishing.jpg

Once writing done, Etcher asks you if you want to burn another demo image:

etcher_done.jpg

Information

Your SD card is ready!

 

Flash the demo

Warning

use SAM-BA 3.9.y onwards. You can download it here: SAM-BA 3.91 release page.

Connect the USB to the board before launching SAM-BA

  • Short the JP7 (BOOT_DIS) to prevents booting from Nand or serial Flash by disabling Flash Chip Selects
  • Connect a USB micro-A cable to the board (J11 5V-USB-A) to power up the board
  • Open the JP7 (BOOT_DIS) to enable booting from Nand or serial Flash by enabling Flash Chip Selects
  • check whether the board is found in your PC as a USB device:
    • For Microsoft Windows users:* verify that the USB connection is well established
      AT91 USB to Serial Converter should appear in Device Manager. If it shows a unknown device you need to download and install the driver: AT91SAM USB CDC driver
      AT91 USB to Serial Converter
    • For Linux users: check /dev/ttyACMx by monitoring the last lines of dmesg command:
      [172677.700868] usb 2-1.4.4: new full-speed USB device number 31 using ehci-pci
      [172677.792677] usb 2-1.4.4: not running at top speed; connect to a high speed hub
      [172677.793418] usb 2-1.4.4: New USB device found, idVendor=03eb, idProduct=6124
      [172677.793424] usb 2-1.4.4: New USB device strings: Mfr=0, Product=0, SerialNumber=0
      [172677.793897] cdc_acm 2-1.4.4:1.0: This device cannot do calls on its own. It is not a modem.
      [172677.793924] cdc_acm 2-1.4.4:1.0: ttyACM0: USB ACM device

      idVendor=03eb, idProduct=6124: from this message you can see it's Microchip board USB connection.

Run script to flash the demo

  • download the demo package for the board. They are marked as "Media type: NAND Flash " in the table above
  • extract the demo package
  • run your usual terminal emulator and enter the demo directory
  • make sure that the sam-ba application is in your Operating System path so that you can reach it from your demo package directory
  • for Microsoft Windows users: Launch the demo_linux_nandflash.bat file
  • for Linux users: Launch the demo_linux_nandflash.sh file
  • this script runs SAM-BA 3 and the associated QML sam-ba script (demo_linux_nandflash_usb.qml) with proper parameters
  • when you reach the end of the flashing process (this will take a few minutes), the following line is written:
    -I- === Done. === 
  • connect a serial link on DBGU and open the terminal emulator program as explained just above
  • power cycle the board
  • monitor the system while it's booting on the LCD screen or through the serial line

Build From source code

Setup ARM Cross Compiler

  • First step is to dowload the ARM GNU Toolchain:
    wget -c https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf.tar.xz
  • Next step is to add the ARM GNU Toolchain into your system:
    tar -xf arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf.tar.xz
    export CROSS_COMPILE=`pwd`/arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf/bin/arm-none-linux-gnueabihf-

    or

    tar -xf arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf.tar.xz
    export CROSS_COMPILE=arm-none-linux-gnueabihf-
    export PATH=$PATH:/YOUR/PATH/TO/arm-gnu-toolchain-13.2.Rel1-x86_64-arm-none-linux-gnueabihf/bin/
  • export PATH=${PATH/':/YOUR/PATH/TO/arm-gnu-toolchain-VERSION-x86_64-arm-none-linux-gnueabihf/bin/'/}

Build AT91Bootstrap from sources

This section describes how to get source code from the git repository, how to configure with the default configuration, how to customize AT91Bootstrap based on the default configuration and finally to build AT91Bootstrap to produce the binary. take the default configuration to download U-Boot from NandFlash for example.

Get AT91Bootstrap Source Code

You can easily download AT91Bootstrap source code on the at91bootstrap git repository.

To get the source code, you should clone the repository by doing:

$ git clone https://github.com/linux4sam/at91bootstrap.git
Cloning into 'at91bootstrap'...
remote: Enumerating objects: 17621, done.
remote: Counting objects: 100% (3324/3324), done.
remote: Compressing objects: 100% (1029/1029), done.
remote: Total 17621 (delta 2465), reused 3102 (delta 2285), pack-reused 14297
Receiving objects: 100% (17621/17621), 5.65 MiB | 4.65 MiB/s, done.
Resolving deltas: 100% (13459/13459), done.
$ cd at91bootstrap/

Configure AT91Bootstrap

Assuming you are at the AT91Bootstrap root directory, you will find a configs folder which contains several default configuration files:

sama5d4_xplainednf_uboot_secure_defconfig
sama5d4_xplainedsd_uboot_secure_defconfig
Information

nf means to read nandflash, df means to read serial flash, sd means to read mmc card.

Information

uboot means to load u-boot to RAM, secure means to enter into secure mode, every peripherals are accessible.

You can configure AT91Bootstrap to load U-Boot binary from NAND flash by doing:

$ make mrproper
$ make sama5d4_xplainednf_uboot_secure_defconfig

If the configuring process is successful, the .config file can be found at AT91Bootstrap root directory.

Customize AT91Bootstrap

If the default configuration doesn't meet your need, after configuring with the default configuration, you can customize it by doing:

$ make menuconfig

Now, in the menuconfig dialog, you can easily add or remove some features to/from AT91Bootstrap as the same way as kernel configuration.
Move to <Exit> with arrows and press this button hitting the Enter key to exit from this screen.

Build AT91Bootstrap

Then you can build the AT91Bootstrap binary by doing:

$ make

If the building process is successful, the final .bin image is build/binaries/at91bootstrap.bin.

Build U-Boot from sources

Getting U-Boot sources

Dedicated page on U-Boot wiki: http://www.denx.de/wiki/U-Boot/SourceCode

You can easily download U-Boot source code from Linux4Microchip GitHub U-Boot repository:

  • clone the Linux4microchip GitHub U-Boot repository
        $ git clone https://github.com/linux4microchip/u-boot-mchp.git
     Cloning into 'u-boot-mchp'...
     remote: Enumerating objects: 951876, done.
     remote: Counting objects: 100% (17718/17718), done.
     remote: Compressing objects: 100% (5735/5735), done.
     remote: Total 951876 (delta 12391), reused 15314 (delta 11846), pack-reused 934158
     Receiving objects: 100% (951876/951876), 164.77 MiB | 401.00 KiB/s, done.
     Resolving deltas: 100% (790362/790362), done.
       $ cd u-boot-mchp/
  • The source code has been taken from the master branch which is pointing to the latest branch we use. If you want to use the other branch, you can list them and use one of them by doing:
       $ git branch -r
      origin/HEAD -> origin/master
      origin/dev/tony/sama7g5ek_optee
      origin/master
      origin/sam9x60_curiosity_early
      origin/sam9x60_early
      origin/sam9x60_iar
      origin/sam9x7_early
      origin/sama5d27wlsom1ek_ear
      origin/sama7g5_early
      origin/u-boot-2012.10-at91
      origin/u-boot-2013.07-at91
      origin/u-boot-2014.07-at91
      origin/u-boot-2015.01-at91
      origin/u-boot-2016.01-at91
      origin/u-boot-2016.03-at91
      origin/u-boot-2017.03-at91
      origin/u-boot-2018.07-at91
      origin/u-boot-2019.04-at91
      origin/u-boot-2020.01-at91
      origin/u-boot-2021.04-at91
      origin/u-boot-2022.01-at91
      origin/u-boot-2023.07-mchp
      origin/u-boot-2024.07-mchp
      origin/uboot_5series_1.x

       $ git checkout origin/u-boot-2024.07-mchp -b u-boot-2024.07-mchp
      Branch 'u-boot-2024.07-mchp' set up to track remote branch 'u-boot-2024.07-mchp' from 'origin'.
      Switched to a new branch 'u-boot-2024.07-mchp'

Cross-compiling U-Boot

Before compiling the U-Boot, you need setup cross compile toolchain in the Setup ARM Cross Compiler above.

Warning

Latest versions of U-boot (2018.07 and newer) have a minimum requirement of 6.0 version of the GCC toolchain. We always recommend to use the latest versions.

Once the AT91 U-Boot sources available, cross-compile U-Boot is made in two steps: configuration and compiling. Check the Configuration chapter in U-Boot reference manual.

Information

Go to the configs/ to find the exact target when invoking make.

The U-Boot environment variables can be stored in different media, above config files can specify where to store the U-Boot environment.

   # To put environment variables in serial flash:
  sama5d4_xplained_spiflash_defconfig
  # To put environment variables in nandflash (default):
  sama5d4_xplained_nandflash_defconfig
  # To put environment variables in SD/MMC card:
  sama5d4_xplained_mmc_defconfig

Here are the building steps for the SAMA5D4-Xplained board:

# You can change the config according to your needs.
make sama5d4_xplained_nandflash_defconfig
make

The result of these operations is a fresh U-Boot binary called u-boot.bin corresponding to the binary ELF file u-boot.

  • u-boot.bin is the file you should store on the board
  • u-boot is the ELF format binary file you may use to debug U-Boot through a JTag link for instance.

Build Kernel from sources

Required packages

You must install essential host packages on your build host. These requirements are listed in the Linux kernel documentation with the chapter Install build requirements. You must follow this process which includes, but not limited to, the following packages:

  • build-essential
  • flex
  • bison
  • git
  • perl-base
  • libssl-dev
  • libncurses5-dev
  • libncursesw5-dev
  • ncurses-dev

Getting Kernel sources

To get the source code, you have to clone the repository:

$ git clone https://github.com/linux4microchip/linux.git
Cloning into 'linux'...
remote: Enumerating objects: 8587836, done.
remote: Total 8587836 (delta 0), reused 0 (delta 0), pack-reused 8587836
Receiving objects: 100% (8587836/8587836), 3.49 GiB | 13.44 MiB/s, done.
Resolving deltas: 100% (7117887/7117887), done.
Updating files: 100% (70687/70687), done.
$ cd linux

The source code has been taken from the master branch which is pointing on the latest branch we use.

Information

 Note that you can also add this Linux4SAM repository as a remote GIT repository to your usual Linux git tree. It will save you a lot of bandwidth and download time:

$ git remote add linux4microchip https://github.com/linux4microchip/linux.git
$ git remote update linux4microchip
Fetching linux4microchip
From https://github.com/linux4microchip/linux
* [new branch]                linux-6.6-mchp -> linux4microchip/linux-6.6-mchp
* [new branch]                linux-6.12-mchp -> linux4microchip/linux-6.12-mchp
* [new branch]                master     -> linux4microchip/master

If you want to use another branch, you can list them and use one of them by doing this:

$ git branch -r
  linux4microchip/linux-6.1-mchp
  linux4microchip/linux-6.1-mchp+fpga
  linux4microchip/linux-6.6-mchp
  linux4microchip/linux-6.6-mchp+fpga
  linux4microchip/linux-6.12-mchp
  linux4microchip/master
$ git checkout -b linux-6.12-mchp --track remotes/linux4microchip/linux-6.12-mchp
Branch linux-6.12-mchp set up to track remote branch linux-6.12-mchp from linux4microchip.
Switched to a new branch 'linux-6.12-mchp'

Setup ARM Cross Compiler

  • First step is to dowload the ARM GNU Toolchain:

    wget -c https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf.tar.xz 
  • Next step is to add the ARM GNU Toolchain into your system:

    tar -xf arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf.tar.xz
    export CROSS_COMPILE=`pwd`/arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf/bin/arm-none-linux-gnueabihf-

    or

    tar -xf arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-linux-gnueabihf.tar.xz
    export CROSS_COMPILE=arm-none-linux-gnueabihf-
    export PATH=$PATH:/YOUR/PATH/TO/arm-gnu-toolchain-13.2.Rel1-x86_64-arm-none-linux-gnueabihf/bin/
    • Information

       If you already have an old ARM GNU Toolchain need to clean up the PATH with:

      export PATH=${PATH/':/YOUR/PATH/TO/arm-gnu-toolchain-VERSION-x86_64-arm-none-linux-gnueabihf/bin/'/}
          

    Configure and Build the Linux kernel

    Now you have to configure the Linux kernel according to your hardware. We have two default configuration at91 SoC in arch/arm/configs

    arch/arm/configs/at91_dt_defconfig
    arch/arm/configs/sama5_defconfig
    arch/arm/configs/sama7_defconfig
    • at91_dt_defconfig: for SAM9 (ARM926) series chips
    • sama5_defconfig: for SAMA5 series chips
    • sama7_defconfig: for SAMA7 series chips

     

At this step, you can modify default configuration using the menuconfig

  • $ make ARCH=arm menuconfig

    Now, in the menuconfig dialog, you can easily add or remove some features. Once done, Move to <Exit> with arrows and press this button hitting the Enter key to exit from this screen.

    Build the Linux kernel image, before you build you need set up the cross compile toolchain, check this section.

    $ make ARCH=arm

    [..]

      Kernel: arch/arm/boot/Image is ready
      Kernel: arch/arm/boot/zImage is ready

    Now you have an usable compressed kernel image zImage.

    If you need an uImage you can run this additional step:

    make ARCH=arm uImage LOADADDR=0x20008000

    [..]

    Kernel: arch/arm/boot/Image is ready
    Kernel: arch/arm/boot/zImage is ready
    UIMAGE  arch/arm/boot/uImage
    Image Name:   Linux-6.12.22-linux4microchip-20
    Created:      Thu May 22 18:05:21 2025
    Image Type:   ARM Linux Kernel Image (uncompressed)
    Data Size:    5688984 Bytes = 5555.65 KiB = 5.43 MiB
    Load Address: 20008000
    Entry Point:  20008000
    Kernel: arch/arm/boot/uImage is ready
    make ARCH=arm dtbs

    [..]

      DTC     arch/arm/boot/dts/microchip/at91-sama5d27_som1_ek.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama5d27_wlsom1_ek.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama5d29_curiosity.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama5d2_icp.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama5d3_eds.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama7d65_curiosity.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama7g54_curiosity.dtb
      DTC     arch/arm/boot/dts/microchip/at91-sama7g5ek.dtb

    [..]

    If the building process is successful, the final images can be found under arch/arm/boot/ directory.

Build Yocto Project rootfs from sources

Note that building an entire distribution is a long process. It also requires a big amount of free disk space.

The support for Microchip MPU SoC family is included in a particular Yocto Project layer: meta-mchp. The source for this layer are hosted on Linux4Microchip GitHub accounthttps://github.com/linux4microchip/meta-mchp

Building environment

A step-by-step comprehensive installation is explained in the Yocto Project Quick Build. The following lines have to be considered as an add-on that is MPU specific or that can facilitate your setup.

Step by step build procedure

Note here is the README procedure available directly in the meta-mchp-common layer. This file in the meta-mchp layer repository must be considered as the reference and the following copy can be out-of-sync.

Note starting with Linux4Microchip 2025.04 release, the meta-mchp layer supports Yocto Project templates, so make sure you create a new build environment using oe-init-build-env

OpenEmbedded/Yocto Project BSP layer for Microchip's SoCs

Description

The meta-mchp-common layer consolidates common Board Support Package (BSP) components and metadata for Microchip platforms, streamlining development across various Microchip devices for use with OpenEmbedded and/or Yocto Project.

Supported Machines

The meta-mchp-common layer provides support for various Microchip platforms. For detailed information about supported machines, please refer to the documentation in the relevant sub-layers:

Prerequisites

Before starting, please refer to the Required Packages for Build Host section in the Yocto Project Documentation to install required dependencies for the build environment:

Information

Note: Make sure to install git-lfs and repo in addition to the required packages for your Linux distribution.

For instance, on Ubuntu or Debian, these packages need to be installed on your development host:

sudo apt-get install gawk wget git-core git-lfs diffstat unzip texinfo gcc-multilib \
     build-essential chrpath socat cpio python3 python3-pip python3-pexpect \
     xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev \
     pylint3 xterm repo

Usage

To integrate this layer into your Yocto Project build environment:

Clone the necessary repositories:

Create an empty directory to hold the workspace:

mkdir yocto-dev
cd yocto-dev

Use the repo tool to fetch all the required repositories

Make sure to install the repo utility first.

repo init -u https://github.com/linux4microchip/meta-mchp-manifest.git -b <branch> -m <target>/default.xml

Replace and with the Yocto release branch and the manifest required. For example:

repo init -u https://github.com/linux4microchip/meta-mchp-manifest.git -b scarthgap -m mpu/default.xml

Fetch all the required repositories using the following repo command:

repo sync

Initialize the build environment:

The meta-mchp repository provides sample configuration templates that help set up BitBake layers and key configuration files in the Yocto build directory.

Set the TEMPLATECONF environment variable to point to the appropriate configuration template before initializing the build environment:

export TEMPLATECONF=${TEMPLATECONF:-../meta-mchp/<meta-layer>/conf/templates/default}

Replace meta-layer above with the desired layer based on your target platform. For example:

export TEMPLATECONF=${TEMPLATECONF:-../meta-mchp/meta-mchp-mpu/conf/templates/default}

Note: Setting TEMPLATECONF is only needed the first time you will run the source command.

Then initialize the Yocto build environment:

source openembedded-core/oe-init-build-env

 

Set the target machine and build the image:

MACHINE=<machine> bitbake core-image-minimal

Each sub-layer provides several images that include demos and applications tailored for its respective platform.

For more information on the supported images, please refer to the README:

MPU layer README

Layer Dependencies

This layer depends on the following layers:

- meta-openembedded
 - URI: git://git.openembedded.org/meta-openembedded
 - Layers: meta-oe, meta-networking, meta-python

- openembedded-core
 - URI: git://git.openembedded.org/openembedded-core
 - Layers: meta

For information on the specific revisions used, refer to the meta-mchp manifest repository.

Licensing

The contents of this layer are licensed under the MIT License. See COPYING.MIT for details.

Contributing

If you want to contribute changes, you can send Github pull requests at https://github.com/linux4microchip/meta-mchp/pulls.

See CONTRIBUTING.md for additional information about contribution guidelines.

Maintainers

  • Hari Prasath G E <hari.prasathge@microchip.com>
  • Valentina Fernandez Alanis <valentina.fernandezalanis@microchip.com>
  • Dharma Balasubiramani <dharma.b@microchip.com>

Using SAM-BA to flash components to board

NAND Flash demo - Memory map

demo_nandflash_map_lnx4sam6x.png

 

Install SAM-BA software in your PC

In addition to the official SAM-BA pages on http://www.microchip.com, we maintain information about SAM-BA in the SoftwareTools page.

Warning

use SAM-BA 3.9.y onwards. You can download it here: SAM-BA 3.9.1 release page.

 

Launch SAM-BA tools

In addition to the Qt5 QML language for scripting used for flashing the demos, most common SAM-BA action can be done using SAM-BA command line.

For browsing information on the SAM-BA command line usage, please see the Command Line Documentation that is available in the SAM-BA installation directory: doc/index.html or doc/cmdline.html .

SAM-BA includes command line interface that provides support for the most common actions:

  • reading / writing to arbitrary memory addresses and/or peripherals
  • uploading applets and using them to erase/read/write external memories

The command line interface is designed to be self-documenting.

The main commands can be listed using the "sam-ba --help" command:

SAM-BA Command Line Interface Tool v3.9.1 (linux - x86_64-little_endian-lp64)
Copyright 2025 Microchip Technology

Usage: sam-ba [options]

Options:
  -v, --version                             Displays version information.
  -h, --help                                Displays this help.
  -l, --loglevel <log_level[:options:...]>  Set verbose log level.
  -x, --execute <script.qml>                Execute script <script.qml>.
  -p, --port <port[:options:...]>           Communicate with device using
                                            <port>.
  -d, --device <device[:options:...]>       Connected device is <device>.
  -b, --board <board[:options:...]>         Connected board is <board>.
  -m, --monitor <command[:options:...]>     Run monitor command <command>.
  -a, --applet <applet[:options:...]>       Load and initialize applet
                                            <applet>.
  -c, --command <command[:args:...]>        Run command <command>.
  -t, --tracelevel <trace_level>            Set applet trace level to
                                            <trace_level>.
  -L, --applet-buffer-limit <SIZE>          Set applet buffer limit to <SIZE>
                                            bytes (default 131072).
  -w, --working-directory <DIR>             Set working directory to <DIR>.
  -u, --utils <tool[:args:...]>             Launch a tool <tool> .

If you get the following error, it indicates a symbol mismatch or unresolved symbol when the sam-ba executable is being loaded

$ sam-ba -v
sam-ba: symbol lookup error: sam-ba: undefined symbol: _ZdlPvm, version Qt_5

Check for Qt libraries inside the extracted SAM-BA directory.

$ cd path/to/sam-ba
$ export LD_LIBRARY_PATH=$(pwd)/lib:$LD_LIBRARY_PATH

Additional help can be obtained for most commands by supplying a "help" parameter that will display their usage.

For example "sam-ba --port help" will display:

Known ports: j-link, serial, secure

Command that take an argument with options (port, monitor, applet) will display even more documentation when called with "help" as option value.

For example "sam-ba --port serial:help" will display:

Syntax:
   serial:[<port>]:[<baudrate>]
Examples:
   serial                serial port (will use first AT91 USB if found otherwise first serial port)
   serial:COM80          serial port on COM80
   serial:ttyUSB0:57600  serial port on /dev/ttyUSB0, baudrate 57600

Configure NAND ECC

Using default PMECC parameters

Information

when choosing the board variant with the -b parameter of SAM-BA, the default PMECC configuration for the NAND populated on the board is valid. You can verify its value by running the command that reads one byte in a dummy file (named test.bin in the following command):

# sam-ba -p serial -b sama5d4-xplained -a nandflash -c read:test.bin:0:1
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Executing command 'read:test.bin:0:1'
Read 1 bytes at address 0x00000000 (100.00%)
Connection closed.

You can figure out that the default PMECC parameter for this sama5d4-xplained board is 0xc1e04e07.

Information

Note that if you connect a serial console to the SoC RomCode default UART, you can see even more details about the NAND ECC parameters given by the SAM-BA Applet:

Applet 'NAND Flash' from softpack 3.8 (v3.8).
Initializing NAND ioSet1 Bus Width 8
PMECC configuration: 0xc1e04e07
Sector size: 512
Sectors per page: 8
Spare size: 224
ECC bits: 8
ECC offset: 120
ECC size: 104
PMECC enabled
Buffer Address: 0x0020a240
Buffer Size: 20480 bytes
NAND applet initialized successfully.

If you want to change the default PMECC parameters you can simply specify another value on the SAM-BA command line with the -a nandflash argument as shown below:

# sam-ba -p serial -b sama5d4-xplained -a nandflash:help
Syntax: nandflash:[<ioset>]:[<bus_width>]:[<pmecc_cfg>]
Parameters:
   ioset      I/O set
   bus_width  NAND bus width (8/16)
   header     NAND header value
Examples:
   nandflash                 use default board settings
   nandflash:2:8:0xc0098da5  use fully custom settings (IOSET2, 8-bit bus, header is 0xc0098da5)
   nandflash:::0xc0098da5    use default board settings but force header to 0xc0098da5
For information on NAND header values, please refer to SAMA5D4 datasheet section "12.4.4 Detailed Memory Boot Procedures".

By reading this in-line documentation we can specify the NAND PMECC parameter with this command:

# sam-ba -p serial -b sama5d4-xplained -a nandflash:::0xc1e04e07
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Connection closed.

Programming components into NAND

Program AT91Bootstrap binary

Run SAM-BA with USB connection (equivalent to serial) and erase the beginning of the NAND flash and then write AT91Bootstrap binary:

# sam-ba -p serial -b sama5d4-xplained -a nandflash -c erase::0x40000 -c writeboot:at91bootstrap-sama5d4_xplained.bin
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Executing command 'erase::0x40000'
Erased 262144 bytes at address 0x00000000 (100.00%)
Executing command 'writeboot:at91bootstrap-sama5d4_xplained.bin'
Prepended NAND header prefix (0xc1e04e07)
Appending 4008 bytes of padding to fill the last written page
Wrote 20480 bytes at address 0x00000000 (83.33%)
Wrote 4096 bytes at address 0x00005000 (100.00%)
Connection closed.

Program U-Boot binary

Run SAM-BA with USB connection (equivalent to serial) and erase the U-Boot section in the NAND flash memory map and then write U-Boot binary:

# sam-ba -p serial -b sama5d4-xplained -a nandflash -c erase:0x40000:0x80000 -c write:u-boot-sama5d4-xplained.bin:0x40000
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Executing command 'erase:0x40000:0x80000'
Erased 262144 bytes at address 0x00040000 (50.00%)
Erased 262144 bytes at address 0x00080000 (100.00%)
Executing command 'write:u-boot-sama5d4-xplained.bin:0x40000'
Appending 3137 bytes of padding to fill the last written page
Wrote 20480 bytes at address 0x00040000 (4.59%)
Wrote 20480 bytes at address 0x00045000 (9.17%)
Wrote 20480 bytes at address 0x0004a000 (13.76%)
[..]
Wrote 20480 bytes at address 0x00094000 (81.65%)
Wrote 20480 bytes at address 0x00099000 (86.24%)
Wrote 20480 bytes at address 0x0009e000 (90.83%)
Wrote 20480 bytes at address 0x000a3000 (95.41%)
Wrote 20480 bytes at address 0x000a8000 (100.00%)
Connection closed.

Recent FAQ